Quantcast
Channel: haskell – Luke Palmer
Viewing all articles
Browse latest Browse all 14

Sentences and Paradigms

$
0
0

As our understanding progresses, what once were rigid distinctions tend to become blurred. Hence, I am fascinated by the pervasiveness and stability of the three programming language paradigms: imperative, functional (here I mean that word in the pure sense, not HOFs sense — Conal Elliott would probably have me call it denotational), and logical. Whole languages are beginning to blur their orientation, but specific solutions to problems are still typically classifiable along these lines nonetheless. We will see how the three are linked to forms human communication and the style of our discourse — and thus why these distinctions are so stable.

Each paradigm corresponds to a syntactic unit of language. The imperative, as the name suggests, corresponds to sentences in the imperative mood:

def bfs(predicate, root):
  queue = Queue()
  queue.add(root)             # First, add the root to the queue.
  while not queue.empty():    # While the queue is not empty, do the following:
    node = queue.dequeue()    #   Take a node off the queue.
    if predicate(node):       #   If it satisfies the predictate,
        return node           #     return it.
    for n in node.children(): #   Otherwise, 
        queue.add(n)          #     add each of its children to the queue.

The program is written as a recipe, telling the computer what to do as if a servant. Note that, after qualifying phrases, each sentence begins with an action word in the imperative form, just as this sentence begins with “note”. The object-oriented aspect adds a sort of directorial role to the program, wherein the program is read not as the user telling the computer what to do, but the program telling objects in the program what to do. Sentences are still written in the imperative mood, they can now be directed: “queue, give me an element”, “handle, write down this line.”

But not every sentence in human discourse is imperative, for example this one. The logical captures sentences of relationship, such as:

captures(logical, relationships).

But perhaps we should see a more practical logical program as an example:

mirrors([], []).                  % The empty list mirrors itself.
mirrors([X|XS], L) :-             % [X|XS] mirrors L if
     append(LS,[X],L),            %    LS and [X] compose L, and
     mirrors(XS, LS).             %    XS mirrors LS.

The program is written as a set of assertions, building a model of its world up from nothing. To run this program, you ask it questions about the world:

?- mirrors(X, [1,2,3]).           % What mirrors [1,2,3]?
X = [3,2,1]

A great deal of human discourse falls into this category: propositional sentences. Most of the sentences in this post fall into that category. However, those familiar with Prolog will know that this is a poor implementation of mirrors (it is quadratic time), and would write it this way instead:

mirror([], R, R).         % The mirror of [] prepended to R is R       
mirror([X|XS], Y, R) :-   % The mirror of [X|XS] prepended to Y is
    mirror(XS, [X|Y], R). %   the mirror of XS prepended to [X|Y|.

In proper logical style, mirror expresses itself as propositional relationships, with the caveat that the only relationship is "is". Code written this way, relating things by identity rather than propositionally, is actually characteristic of functional style:

mirror [] r = r           -- The mirror of [] prepended to r is r
mirror (x:xs) y =         -- The mirror of (x:xs) prepended to y is
    mirror xs (x:y)       --   the mirror of xs prepended to (x:y)

The R in the Prolog code is only connecting together propositions so that we can express this idea in a functional way. The original mirrors predicate is quite unlike this; expressing it in Haskell requires more than a mindless transliteration (however there are still hints of a structural similarity, if a bit elusive).

But I claim that “is” is not the defining linguistic characteristic of functional programs. We could write a functional program with a single equals sign if we were so obfuscatedly-minded; the analogous claim is invalid for logical and imperative programs. The characteristic device of functional programming is the noun: functional programs do not give instructions or express relationships, they are interested in defining objects.

bfs children xs =               -- the BF traversal of xs is
    xs ++                       -- xs itself appended to
    bfs (concatMap children xs) -- the BF traversal of each of xs's children

The monad is typically used to express instructions as nouns:

main =                            -- the main program is the recipe which 
    getLine >>= \name ->          -- gets a line then
    putStrLn $ "Hello, " ++ name  -- puts "Hello, " prepended to that line

Haskell elites will object to me using IO as a prototypical example of a monad, but the claim is still valid; look at the words used to define monad actions: tell, ask, get, put, call. These are imperative words. This is not a sweeping generalization, however; for example, the constructors of Escardó’s search monad are nouns.

The following table summarizes the linguistic analogies:

Paradigm Mechanism Example
Imperative Imperative mood Put a piece of bread; put meat on top; put bread on top.
Logical Propositional relationships Bread sandwiches meat.
Functional Noun phrases Meat sandwiched by bread

Each of these paradigms is pretty good in its area. When we’re issuing commands in a functional language, we pretend we are using an imperative language; when we want to treat complex nouns (such as lists) in an imperative language, we are learning fall back on functional concepts to operate on them. When we are documenting our code or talking about types, we use logical ideas (typeclasses, generics).

The thing that makes me hubristically curious is the realization that these three categories hardly cover the mechanisms available in language. What else can we learn from human languages when expressing ourselves to computers?

This post has focused on the “content code” of the various paradigms. There is another kind of code (mostly in statically typed languages) that is interspersed with this, namely declarations:

class Player {...}
data Player = ...

I have not yet been able to find a good analogy for declarations in language; perhaps they introduce something like a proper noun. I will save this topic for another post.

Flattr this



Viewing all articles
Browse latest Browse all 14

Latest Images

Trending Articles





Latest Images